AMY LIN

EYES ON MATH
A VISUAL APPROACH TO TEACHING MATH CONCEPTS

OUR CULTURE

MATH HARD HPPIN

"I like math."

ONTARIO EQAO QUESTIONNAIRE

WHAT DO YOU EXPECT IN A MATH CLASSROOM?

SURPRISE!

"You can teach a student a lesson for a day, but if you can teach him to learn by creating curiosity he will continue the learning process for as long as he lives. "

WHAT IS 58 X 38?

CHOOSE TWO NUMBERS AROUND 50 TO MULTIPLY.

MATH IS ABOUT
REASONING AND THINKING

HOW DO WE KNOW WHEN STUDENTS ARE ENGAGED?

VISUALISATION

A

M

HOW MUCH BIGGER?

KIPPER'S COOKIE CAPER
VIDEOS

QUESTIONS?
 Why is your dog so picky?

Is your dog a proportional thinker?

Can your dog do fractions?

Why is this math class?

How do we fix it so Kipper is happy again?
$y^{y} \quad y=\operatorname{sun}(x)$

VISUALISATION
MATH-TALK
COMMUNITY

WE LIKE VISUALS

USING VISUAL APPROACHES TO TEACHING MATH CONCEPTS

PYTHAGOREAN THEOREM

PROOF WITHOUT WORDS

WHAT IS THIS GRAPH ABOUT?

$$
\begin{aligned}
& \text { A\% } 060
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8 } 6 \\
& \text { OA OA }
\end{aligned}
$$

QUESTIONS

-When do we use multiplication?

- Are all the groups of penguins the same size? Does that matter when you are deciding if you can use multiplication?
- Could the penguins be rearranged into equal groups?

QUESTIONS

- What does the 4 tell you about each picture?
- What does the 3 tell you about each picture?
- How are the pictures alike? Different?

When does 12-8 tell you about the bugs?

QUESTIONS

- Where do you see 12 in the picture?
- Where do you see 8 ?
- Why do you think a subtraction sentence was used?
- When you take 8 away from 12 , you see the 8 items within the 12 items. Why does it makes sense to show all $8+12$ (or 20) items to compare the ladybugs to the butterflies?

ZERO PRINCIPLE INTEGERS

What do all these pictures show?
$-5-(+3)$

$$
5-(-3)
$$

QUESTIONS

- Why would a multiplication sentence describe this picture?
- Why could you always write a division sentence if you could write a multiplication sentence?
- Why are there two possible division sentences? How are the sentences alike or different?
- Are there two possible multiplication sentences?

You know that the yellow arrow is a little longer than the blue one. Both are whole number amounts. What could ? be? How do you know?

WHAT IS

 LINEAR?

QUESTIONS

- How could you predict the cost of a purchase of one $\$ 30$ item and a number of $\$ 2$ items?
- What table of values would describe the situation in the picture?
- Why might the equation of the line be $y=30+2 x$, if x tells how many $\$ 2$ plants are purchased?

VISUAL APPROACHES IN THE
CLASSROOM

Describing Relationships

WHAT IS THE SURFACE AREA OF A 100 CUBES?

VISUALISE $4 N+2$

Ratios

Using linking cubes...build a structure where the following are true:

There are twice as many cubes of colour 1 as colour 2.

There are $1 / 3$ as many cubes of colour 3 as colour 1. For example, there are twice as many red cubes as blue cubes and there are a third as many yellow cubes \square as red cubes.

WHAT IS THE DIAMETER OF THE ICE CREAM PUDDLE?
\rightarrow in order to find the diameter, you need to know the radius

$$
=r 2
$$

Scoops of icecream: 3 scoops
Questions:
(1) What was the radius of all 3 scoops? How big was the ice-cream puddle?
re knew how big ice-cream puddle we can figure the radius to nine the

3 Spheres I Cone

What is the" of the cone?

STACKING CUPS

WHAT IF THEY ARE STRUGGLING WITH LEARNING THE MATH CONCEPTS?

CONTEXT?

ONLY IN MATH PROBLEMS CAN YOU BUY 60 CANTALOUPES AND NO ONE ASKS WHAT THE HELL IS WRONG WITH YOU.

GAP CLOSING

ONTARIO MINISTRY OF EDUCATION

MATHGAINS

Number Sense

WWW.EDUGAINS.CA /NEWSITE/MATH/

RESEARCH REPORT

GAP CLOSING RESULTS

Non-Gap Closing Students

Post \%

\% Growth

RESEARCH REPORT

GRADE 9 ALGEBRA

	Algebra	
	Non Gap Closing	Gap Closing
Average Pre-Test Score	73.0%	
Average Post-Test Score	$72.2 \%<\begin{array}{r} \text { Gap } \\ \text { perc } \end{array}$	$\sum 67.2 \%$
Percentage Point Change	-0.8	+12.3

RESEARCH REPORT
NUMBER SENSE

	Number Sense	
	Non Gap Closing	Gap Closing
Average Pre-Test Score		
Average Post-Test Score		
Percentage Point Change	+1.3	+8.6

RESEARCH REPORT

MEASUREMENT

	Measurement	
	Non Gap Closing	Gap Closing
Average Pre-Test Score		
Average Post-Test Score	$\text { 39.5\% }<\begin{gathered} \text { Gap rev } \\ \text { percent } \end{gathered}$	
Percentage Point Change	+9.5	+21.0

PRE-TEST RESULTS

EQUITY PROJECT

RESEARCH REPORT

ENGLISH LANGUAGE LEARNERS

Grade 6 Students

Students in the same classes

Average
Pre-Test Score
Average
Post-Test Score
No Gap Closing with
Non-ELL
$\mathrm{N}=36$
42.2\%

STUDENTS WITH LD'S

Students with IEP's

Average Pre-Test Score	55.2%		17.8\%
Average Post-Test Score	57.1\%		32.3\%
Percentage Point Change	+1.9	+14.2	

ABRAHAM

"I think it's really good for students to use Gap Closing in math because it helps you a lot... because of the Think Sheet and also the different kinds of math problems that you get to work on. It makes math easier."

Abraham's Math Teacher

"I can see it working because the kids in my class really do have gaps and if you can address those specific gaps than we are not wasting time anymore."
"In my HSP (self-contained LD class), I have primary and juniors so it's like all the grades and then they are working at different grade levels as well. I used the think sheets - they were more direct and that was when they really started to get it and enjoy it. They were getting it as a group and then being able to do it on their own."

Completed 3 Modules (Fractions, Multiplying/Dividing) in a Guided Small Group

Pre-Test Total (\%)	Post-Test Total (\%)	Percentage Point Gain
9.8	43.9	+34.1

VISUAL REPRESENTATIONS

REPRESENTATIONS

AUTISM SPECTRUM DISORDER

Imagery is a powerful force for perception and understanding. Being able to "see" something mentally is a common metaphor for understanding it.

Visualisation plays a vital role in teaching and learning mathematics. It provides the opportunities for high levels of communication and a focus on important mathematical concepts.

No worksheets!??!
Yay!

AMY LIN www.amylin.me
amylin62@me.com

