

Eyes on Math

A visual approach to teaching math concepts

Amy Lin
Halton District School Board
Burlington, Ontario, Canada

- we use the power of visualization in math when we have students use manipulatives

Wednesday, November 20, 13

Wednesday, November 20, 13

manipulatives

kinesthetic or visual?
picture books
make sense of math

we like visuals...

proof without words

use provocative visuals with open questions leading to rich conversations

Common Core Standards

- making sense of problems
- reasoning abstractly and quantitatively
- constructing viable arguments and critiquing the reasoning of others

Also...

- modelling with mathematics
- using appropriate tools strategically
- looking for and making use of structure

Can you write \qquad X \qquad to describe this picture?

Wednesday, November 20, 13
A picture about multiplication and how it is about equal groups. In the picture, most groups are equal - but notice that not all of them are. However, grouips of two can be rearranged to form grouips of 4 or the groups of four can be broken down into groups of 2. The picture is more interesting for students because it has an even number of groupis of two - which makes it possible to have both groups of 2 or 4 .

questions

- When do you use multiplication?
- Are all the groups of penguins the same size? Does that matter when you are deciding if you can use multiplication?
- Could the penguins be rearranged into equal groups?
we want students to realize that multiplication describes situations involving equal groups we want students to notice sizes of groups when deciding whether or not to use multiplication we want students to see that sometimes rearranging groups can change the way we describe them eg. $7+9$ can be rearranged to $8+8$ which is a double - which might help us calculate a sum

What different addition sentences might tell how many books will be on each shelf after putting away the books on the floor?

Wednesday, November 20, 13

This picture is about addition as combining.
Questions on adding as combining should focus on what the numbers in the addition sentence represent, the fact that the total or sum is greater than either number being added if more than 0 is added.
This picture provides conversations about the variety of number sentences possible. If all 6 books were added to one shelf, sentences such as $3+6=9,5+6=11$, or $7+6=13$. If the additional books were split among shelves sentences such as $3+2=5$ could be discussed

P

questions

- Why do you know there will be no totals less than 3 ?
- What might one greatest total be? How do you know?

Wednesday, November 20, 13
changing addends, but not the sum
picture shows that the reduction of one addend by the same amount by which the other is increased is really a reorganization of an amount, and the total does not change
$8+5=10+3$

questions

- What other sentences could you write about the groups of frogs that would be true?
- How would the sentence change if 4 frogs moved over?
- Why did the sum have to be the same for both sentences?
- Why do $5+8$ and $3+10$ have the same answer?

Wednesday, November 20, 13
Different types of subtraction - where most students in early grades are exposed to subtraction - but knows it as "take away". It is important for them to know we use subtraction to compare items and to decide how much more one amount is than another.

In this case - we look at how many more ladybugs than butterflies there are. The picture of ladybugs and butterflies is deliberately arranged as it is so that students themselves can recognize that putting the creatures into 1-1 correspondence would help them answer the question

4

Questions

-Where do you see 12 in the picture?
-Where do you see 8 ?

- Why do you think a subtraction sentence was used?
- When you take 8 away from 12 , you see the 8 items within the 12 items. Why does it makes sense to show all $8+12$ (or 20) items to compare the ladybugs to the butterflies?

Wednesday, November 20, 13

Does this picture show addition, subtraction or both?

HO

questions

- What addition sentences describe the picture?
- What subtraction sentences describe the picture?
- What do all of the sentences you wrote have in common?

Wednesday, November 20, 13
This picture is designed to contrast three different situations - one where an array is used so that commutativity of multiplication is very clear (since 4 rows of 3 is clearly 3 columns of 4) and one where it is not too difficult to pull out 3 groups of 4 (the conductors, flue players, and cellists), even thought the visual really only shows 4 groups of 3 and one where it is more challenging to find the 3 groups of 4 among the 4 groups of 3

- What does the 4 tell you about each picture?
- What does the 3 tell you about each picture?
- How are the pictures alike? Different?

- How did you think the girl decided the width of the puddle was 16 steps wide?
- Could both people be right?
- Are steps a good unit to use to measure length?

Wednesday, November 20, 13
we want students to think about the unit used when measuring and how it would be used we want students to know that measurements that sound different can both be correct - for example 12 inches and 1 feet could describe the same item.
we want students to know that nonstandard units might not always be as meaningful to a person as standard units

$\mathrm{H}+\mathrm{H}+\mathrm{H}+\mathrm{H}+\mathrm{H}+\mathrm{H}+\mathrm{H}$

Write the fraction of the red trapezoid that is covered by blue. Write the fraction of the blue that makes up the red.

What happened and why?

What do all these pictures show?

$\mathrm{H}+\mathrm{H}+\mathrm{H}+\mathrm{H}+\mathrm{H}+\mathrm{H}+\mathrm{H}$

integers

zero principle

Wednesday, November 20, 13
integer video
$\stackrel{H}{=1}$ integers

1.

Wednesday, November 20, 13
This picture is intended to emphasize the connection between multiplication and division a students will see $2 \times(-6)=-12$ as two groups of -6 totalling -12
or -12 divided by $2=-6$ - because -12 can be split into two groups of -6
and -12 divided by $-6=+2$ - because there are 2 groups of -6 in -12

$E=-3$ $e=-3$ $E=-3$ $E=-3$ $E=-3$

- What equation matches each pan balance?
-What if you put 4 cubes in each bag?
- How do you know that you can't make the first balance work if you put more than 4 cubes in the x bags?
- Which equation tells you that two expressions are equivalent? Which doesn't?

Wednesday, November 20, 13

We want students to relate the physical representations to algebraic equations we want students to consider the effect of substituting particular values for x in each type of equation we want students to consider why the first equation has no other solutions we want students to recognize that if an equation equates two equivalent expressions, it will have an infinite number of solutions but that other equations are valid only for limited values

You know that the yellow arrow is a little longer than the blue one.

 Both are whole number amounts. What could ? be? How do you know?

0

Wednesday, November 20, 13

Try this question. (idea from Marian Small)
What did you notice about the amount at "?"
The picture is a great way to chose distributive property - clearly - because you can see the 3 blues and 3 yellows. and the ? is always a multiple of 3 .

Wednesday, November 20, 13
As students try to factor numbers, it helps them to realize that factors come in pairs.
This picture is designed to enable students to see that if 24 is shared among 4 , antoehr factor is the share size, which is 6.
This is because division has both a sharing and a how many groups meaning.

questions

- What other number of dogs could share 24 bones fairly?
- How did the picture help you figure this out?
- Why does getting one factor of a number automatically give you another one?
- Would the factors still come in pairs if there had been 25 bones?

Wednesday, November 20, 13
using puzzles help students experience the composition of shapes however when they use pattern blocks or tangrams, as shown below, to make objects, they are more likely aware that they are composing shapes to make other shapes

questions

- What shapes do you see making up each picture?
- What does each picture look like?
- Do you think that it would be harder to have different designs if all of the small shapes we used were identical?

Describing Relationships

using linking cubes to visualize $4 n+2$

4

questions

- How could you predict the cost of a purchase of one $\$ 30$ item and a number of $\$ 2$ items?
- What table of values would describe the situation in the picture?
- Why might the equation of the line be $y=30+2 x$, if x tells how many $\$ 2$ plants are purchased?

We thought it was option C be cause if he sells 40 programs he will make more maney then option is and A, but if he sells under 40 he would make more with option 15 .

Option B		
	Pay	\| Firsfour
0	15	72.5
5	17.5	$3^{2.5}$
10	20	12.5
15	22.5	22.5
20	25] 2.5
25	27.5] 2.5
30	30] 2.5
35	32.5] 2.5
40	35	12.5

Max just got a job selling programs during Toronto Raptor games. He is offered three options to be paid for his services:

Option A - \$30.00 fixed pay
Option B - \$15.00 pay plus $\$ 0.50$ for every program he sells
Option C - \$1.00 for every program he sells

In pairs, use tiles to create a pattern that results in a line graph with a slope of 8 using the term number as the x value and the term value as the y-value.

Create your own

- Choose a topic
- Think of an idea you want to bring out
- Choose a visual to make it happen

What do you know about $2 / 3$ from this picture?

For example:

Idea - part of a set and part of a whole meanings are related

Thank you!

amylin62@me.com

Tedx Sixteen Mile Creek
Teaching Math-ish-ly

